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SOLUTION OF THE EXTERIOR AND INTERIOR DIRICHLET PROBLEM 

OF POTENTIAL THEORY IN A MULTIPLY CONNECTED DOMAIN 

V. M. Khvisevich UDC 536.24:539.313 

Through use of a complement to the solution of a heat conduction boundary val- 
ue problem of Dirichlet type (presented classically in the form of a double 
layer potential) we obtain by means of simple sources singular integral equa- 
tions (SIE) for exterior and interior multiply connected domains. Algorithms 
and a computer program were developed to obtain a numerical solution of the 
SIE. 

In considering thermal problems of Dirichlet type by method of the potential (tempera- 
ture T is a harmonic function and is subject to the equation of Laplace) two traditional 
methods are employed: classical (nondirect) and nonclassical (direct). 

The classical method consists in seeking a solution in the form of a double layer 
potential: 

-- ~• c~ (i) T 
S Y - ' - - ~  Y" 

Its limiting value at points of boundary S of domain V is equated to the given function and 
we obtain the following integral equation: 

T (xs) = 2~• (Xs) ~ + v. p. ~ z(y) cos~ dSy. (2 )  
r 2 

Here  T(x  S) i s  a g i v e n  v a l u e  o f  t h e  f u n c t i o n  on b o u n d a r y  S o f  domain  V; K i s  t h e  d e n s i t y  o f  
t h e  d o u b l e  l a y e r  p o t e n t i a l ;  ~ i s  t h e  a n g l e  b e t w e e n  v e c t o r  r = lY - x[ and t h e  e x t e r i o r  n o r m a l  
ny to S at the integration point y; ~, = 1 for the inner limit; ~ = 0 for the direct value; 
and N = -i for the outer limit; v. p. indicates principal value of the Cauchy-type integral. 

This method is used, however, only in the case of an interior simply connected domain 
[I]. For an exterior domain (even a simply connected one) it is not a suitable method. Ac- 
tually the double layer potential can only represent the temperature of the exterior domain 
partially. If the temperature is split up into two components, a constant component and a 

variable component, T = T(m) + T(V), where T(m) is the mean value, the influence of the mean 

temperature T(m) is then not taken into account by the double layer potential. In addition, 
for a simply connected exterior domain even a variable temperature field cannot be represented 
by a double layer potential if the sources are distributed uniformly over the boundary surface 
(K(y) = const): 

X doa s ~ ~ .~ COSqa ~ XO)S T .~ dS  0 ( 3 ) 
s ~ r z 
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i. Definition of solid angle u S for surface S of exterior region. 

2. Scheme for isolating parts of space enclosed by surface S o . 

(the solid angle m S of the whole surface S is equal to zero when point x is located in the 
exterior region V- (Fig. i) and T--0). In the case of a multiply connected region V- the 
situation remains unchanged so long as point x e V-. 

We consider the direct method, i.e., when the solution is represented by Green's 
formula: 

1 ~ (  dT I + T s C O S ~ ) d S u ,  (4) 
T = - - 4 n  , , dn u r r z / 

h e r e  T S i s  t h e  v a l u e  o f  t h e  t e m p e r a t u r e  on t h e  bounda ry  s u r f a c e  S; dT/dny i s  t h e  v a l u e  o f  t h e  
normal  d e r i v a t i v e  o f  t h e  t e m p e r a t u r e .  

I n  r e g i o n  V + l e t  us  assume t h e r e  i s  a h o t  l i q u i d  w i t h  t e m p e r a t u r e  T. Then t h e  f low o f  
h e a t  f rom t h e  l i q u i d  i n t o  t h e  s u r r o u n d i n g  s o l i d  body [3] i s  g i v e n  by 

q = _ _ ~  d r  (5) 

dn 

where % is the heat transfer coefficient. The flow q may turn out to be the same at all 
points of the surface S, for example, owing to symmetry of the surface S itself. Under such 
boundary conditions the double layer potential in relation (4) will be equal to zero and 
the temperature is expressed thus: 

T _  1 d r  i 1 dS. (6)  
4~ dn ~ r 

We a p p l y  a t heo rem r e l a t i n g  t o  t h e  mean v a l u e  o f  t h e  i n t e g r a l  in  Eq. ( 6 ) .  At a s u f f i c i e n t l y  
l a r g e  d i s t a n c e  r 8 we have  t h e  f o r m u l a  

T ~ '  1 dT S 1 _ qS 1 Q 1 (7)  
4~ dn r~ 4~Z r~ 4~Z r6 

where  Q i s  t h e  t o t a l  t h e r m a l  f l u x  t h r o u g h  s u r f a c e  S, o r  Q = qS i s  t h e  o u t p u t  o f  a l l  t h e  
t h e r m a l  s o u r c e s  p r e s e n t  in  r e g i o n  V +. E x p r e s s i o n  (6)  o r  (7)  i s  t h e  d e f i n i n g  e x p r e s s i o n  f o r  
t e m p e r a t u r e  T in  t h e  e x t e r i o r  r e g i o n  V- s i n c e  an a r b i t r a r y  c o n s t a n t  t e m p e r a t u r e  f i e l d  T(m) = 
c o n s t  (T must  be a r e g u l a r  f u n c t i o n  a t  i n f i n i t y ,  i . e . ,  T~ = 0) c a n n o t  be added t o  t h e  c a l c u -  
l a t e d  value and the direct formulation yields the specified solution. 

We consider now, instead of the infinite region V-, a finite region V, obtained by iso- 
lating from V- a portion of the space (see Fig. 2) enclosed by surface So: V + V- as 

S0 +~. 

In the classical approach we obtain, according to formula (3), a constant term for the 
enveloping surface So, equal to the temperature T~ at infinity: 

T = T~ = const = 4Z• (8)  

In the direct approach we also obtain a constant term for T: 

1 ~ T~dmo = ~ T~mso = T| (9 )  
4~ so 4~ ' 

The potential of a simple layer for the enveloping surface s o in relation (4) is equal to 
zero, since dT/dn = C/r= 2 + 0, and the temperature, by formula (7), will be equal to zero, 
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Fig. 3. Determination of strength of source Ai. 

i.e., introduction of the enveloping surface corroborates uniqueness of the direct method 
solution. But for the classical approach, introduction of an enveloping surface still does 
not remedy the form of solution (i) since the mean value K of densities of potentials on 
S i does not contribute to the value of temperature T. 

Using a device known in the theory of harmonic functions, we add to solution (i) simple 
sources of strength Ai, present inside surface S i. Then 

T =  T~ + ~• dS-}- ~ Ai , (10)  
Si f2 i FA i 

where rA i  is  the distance to a source (see Fig.  3).  

Let us assume we have a surface S i. We are required to calculate strength of the source 
starting from the given boundary conditions. In the case of a single surface, instead of 
relation (i0), we write 

r = r ~  + ~do,+A-d- (11) 
rA 

Ideally, through point x we draw surface S x (see Fig. 3; S x is not to be confused with 
S O § ~, which yields the term Too). The mean value of temperature T on S x is determined from 
the condition (theorem concerning the mean) given in [2]: 

y~.z ) _ 1 ~.~ Ts~dS~. (12) 
Sx s x 

Into relation (12) we substitute expression (ii): 

1 ~ dS~ 
r r  A rA (13)  

We direct surface S x towards the boundary surface S. Equation (13) here remains valid, but 

in the limit T (m) will be equal to the mean value of the temperature T S = f, given in the 
Dirichlet problem on S: 

T{m) - 1 SfdS. (14) 
S J 

In the limit formula (13) then takes the form 

and the source strength is 

1 (~ fdS- -T=o:A<~ dS (15)  
S J " s  rA 

f d S - - T ~  , S = .~dS. (16)  

"~S ~ S r A 

I f  t h e  number o f  s u r f a c e s  i s  n ,  r e l a t i o n  (16)  may t h e n  be a p p l i e d  on each  o f  them and makes 
i t  p o s s i b l e  t o  c a l c u l a t e  a l l  t h e  s t r e n g t h s  A i ( i  = 1, 2, . . . ,  n ) .  The l i m i t i n g  e x p r e s s i o n  
f o r  t h e  t e m p e r a t u r e  as  p o i n t  x t e n d s  t o w a r d s  a p o i n t  o f  an a r b i t r a r y  one o f  t h e  s u r f a c e s  
S i may be w r i t t e n  

cosqo dS U + ~ A~ (17)  7 s = T = - - 2 a •  (~• r~ - 
S i=1  fAi 
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Equating expression (17) to the given function F, we obtain an integral equation for K: 

this suggests a Dirichlet 
bution of sources on S e. 
relation (20). 

COSqD dSy-~- 2 Ai (18)  F = T | 2 1 5  •  r 2 . . 
S i=1  rAi 

S o l v i n g  i n t e g r a l  e q u a t i o n  (18)  f o r  K(y ) ,  we d e t e r m i n e ,  a c c o r d i n g  t o  f o r m u l a  ( 1 0 ) ,  t e m p e r a -  
t u r e  T at an arbitrary point of the region V- being considered. We also apply this approach 
to the case of an interior multiply connected region V +. 

Denoting the enveloping surface of the k + 1 connected region by Se, we require that at 
boundary points of surface Sk: 

T~ ,  -- 1 <~ Ai ~ dS___~k Jr 4a• (19) 
Sh+z ~ rA i Sh 

condition for T(m). Here Ke(m) is the mean density of the distri- 
Taking relation (14) into account, we determine constant A from 

Substituting expression for the temperature 

T =  ~ • cosqo dS~-k ~ A, (20)  
�9 f g  

Sk+ 1 f = l  rAi 

into the Dirichlet-type boundary conditions, we obtain an integral equation for the heat 
conduction boundary value problem for the interior multiply connected domain: 

c~ dSy-{- ~ " - - F .  (21)  2a*• v. p. ~ • r z .r 
Sh+ 1 i=1  rA~ 

Solving Eq. (21) for K, we determine the temperature in region l rb from formula (20). 

Thus, by adding simple sources to the solutions (i), (20), we manage to avoid a defi- 
ciency in the classical method for solving a thermal Dirichlet problem for exterior and in- 
terior multiply connected domains. The resulting formulas (i0), (18), (20), (21) make it 
possible to solve three-dimensional problems (in [4, 5] integral equations are obtained for 
two-dimensional and axially-symmetric problems). 

Algorithms were developed for obtaining numerical solutions on a computer. Integrals 
were calculated using Gaussian-type quadrature formulas with an even number of nodes; singular 
integrals were handled with the aid of cubature formulas [6]. To calculate elliptic inte- 
grals in the axially-symmetric case we used the Lashchenov formulas. Reliability of our for- 
mulas and the high accuracy of the algorithm were confirmed by numerically solving test prob- 
lems on a computer, namely, boundary value problems for a hollow ball, an infinite cylinder, 
a cylinder of finite length, and others. Thus, using the programs developed here, solu- 
tions can be obtained for two-dimensional, axially-sym~netric, and three-dimensional boundary 
value problems for Dirichlet-type heat conduction for piecewise-smooth exterior and interior 
multiply connected regions. 
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